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ABSTRACT 

 

Many military systems must be capable of sustained 
operation in the face of mechanical shocks due to projectile or 
other impacts.  The most widely used method of quantifying a 
system’s vibratory transient response to shock loading is called 
the shock response spectrum (SRS).  The system response for 
which the SRS is to be determined can be due, physically, 
either to a collocated or to a noncollocated shock loading.  
Taking into account both possibilities, one can define the SRS 
as follows: the SRS presents graphically the maximum transient 
response (output) of an imaginary ideal mass-spring-damper 
system at one point on a flexible structure, to a particular 
mechanical shock (input) applied to an arbitrary (perhaps 
noncollocated) point on the structure, as a function of the 
natural frequency of the imaginary mass-spring-damper system.  
For a response point sufficiently distant from the impact area, 
many Army platforms (such as vehicles) can be accurately 
treated as linear systems with proportional damping.  In such 
cases the output due to an impulsive mechanical-shock input 
can be decomposed into exponentially decaying sinusoidal 
components, using normal-mode orthogonalization.  Given a 
shock-induced loading comprising such components, this paper 
provides analytical expressions for the various common SRS 
forms.  The analytical approach to SRS-determination can serve 
as a verification of, or an alternative to, the numerical 
approaches in current use for such systems.  No numerical 
convolution is required, because the convolution integrals have 
already been accomplished analytically (and  exactly), with the 
results incorporated into the algebraic expressions for the 
respective SRS forms. 

 

A two-dimensional SRS [1] (typically termed simply an 
SRS) represents graphically the frequency content of a 
specified shock input ( )td  in terms of the maximum response 
( )tx  it would induce in a hypothetical, single-degree-of-

freedom (SDOF) mass-spring-damper (MSD) system, 
seismically subjected to the shock.  (Refer to Figure 1.)  The 
SRS plots a selected kinematic measure of the maximum time-
domain motion-response (of mass ) against the SDOF-
system natural frequency, with the frequency varied over some 

m
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INTRODUCTION 

 

Modern warfare calls for many military systems to be 
capable of sustained operation under extreme environmental 
conditions.  The mechanical shocks from such sources as blast-
waves and projectile impacts, and even vehicular motion over 
rough terrain, make high demands on military equipment.  For 

design and analysis purposes, the vibratory, transient response 
of systems (or of system models) subject to mechanical shock 
is typically captured using two frequency-dependent 
(“spectral”) tools [1, 2]: (1) the Fourier spectrum; and (2) the 
shock response spectrum (SRS).  

 
 
 
 
 
 
 
 
 

 
Figure 1.  Hypothetical SDOF MSD system,  

   for SRS determination  
 

range of interest.  In producing the plot, both the shock input 
and the SDOF-system damping ratio are held constant across 
the entire range of natural frequencies.  The shock input is 
typically a position input .  Some useful 
measures of the response include (1) relative displacement, 

( )[ 1 Figurein  td ]

( ) ( )tdtx − ; (2) “pseudovelocity,” ( ) ( )td[ txn ]−ω ; and (3) 
absolute acceleration, ( )tx&& .  As used in this report, the 
respective SRS’s are designated and defined as follows [2]: 

 



 Spectral displacement (or relative-displacement SRS): 
 

 ( ) ( ) ( ) max: tdtxS nD −=ω . (1) 
 

 Spectral velocity (or pseudovelocity SRS) [3, 4]: 
 

 ( ) ( ) ( ) ( )nDnnnV StdtxS ωω=−ω=ω max: . (2) 

This displacement ( )td  serves as the input to the SDOF 
MSD system (see Figure 2).  For the ith component ( )td i , the 
constants , iD iα , iω , and  represent the input amplitude, 
rate of exponential decay, oscillation frequency, and phase 
shift, respectively.  Each component  begins at time 

iφ

0=t  (the  
 

 Spectral acceleration (or absolute acceleration SRS):  
 

 ( ) ( )max: txS nA &&=ω . (3) 

time of impact), as indicated by the unit step function .  
As documented below, if one assumes the induced 
displacement 

)(1 tu−

( )td  to be given by Equations (4) and (5), one 
can find an analytical expression for the relative displacement   

Consider now the case of a mechanical shock ( )tc  applied 
to an arbitrary point C of a generic system S.  (Refer to Figure 
2.)  If a nonlinear finite-element model exists for S, the induced 
displacement  at some other point D on S can typically be 
determined numerically, and then used to calculate (again, 
numerically) the indicated spectral quantities at D.  In general, 
though, analytical evaluation of , , or  is not possible 
for nonlinear systems.  However, for a response point 
sufficiently distant from the impact area, many army platforms 
(e.g., vehicles) can be accurately treated as linear systems with 
proportional damping.  In such cases analytical SRS 
determination proves possible.   

( )td

DS VS AS

 

 ( ) ( ) (tdtxt −= )δ ,  (6) 
 

and for the absolute acceleration , to use in evaluating ( )tx&&
( )nDS ω , ( )nVS ω , and   for any ( nAS ω ) ς  in the range 

10 <ς≤ .  These analytical expressions can either be used to 
plot the respective spectral quantities, or to check the plots 
found using alternative evaluation methods. 

 
PROBLEM STATEMENT  
 

 Consider the linear, SDOF MSD system shown above in 
Figure 2.  Assume the displacement ( )td  at point D to 
comprise a linear combination of ν exponentially decaying 
sinusoidal inputs (i.e., to the SDOF MSD system), as given by 
Equations (4) and (5).   The objectives of this research effort 
are to develop analytical forms for the spectral quantities 

( )nDS ω , ( )nVS ω , and , as defined by Equations (1), 
(2), and (3), respectively.  The general case ( 0

( nAS ω )
1<ς≤ ) will be 

considered first, and then the special case of 0=ς .  
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SOLUTION FOR THE GENERAL CASE ( 10 <ς≤ ) 
  

Basic approach 
 

 The system differential equation of motion (DEOM) can be 
expressed by 

Figure 2.  Shock-loaded system S,  
with (hypothetical) attached MSD system   

for SRS determination    . (7) kddckxxcxm +=++ &&&&  

In standard form (i.e., in terms of  the damping ratio ς  and the 

natural frequency nω ), the DEOM is  

Consider the typical case of an undamped or underdamped, 
linear system, subjected to a mechanical-shock disturbance, at 
point C.  In such cases, analysis by the method of modal 
superposition yields an expression for the induced displacement 

 (at D) as a linear combination of modal coordinates [5, 6].  
These coordinates are the solutions to their respective 
decoupled scalar differential equations.  The inputs to these 
scalar equations are modal forces, which are themselves scalar 
multiples of the mechanical-shock disturbance.  If the 
mechanical shock can be approximated as an impulse, the 
induced displacement d  will be a linear combination of 
damped sinusoids.  Denoting the i

( )td

( )t
th sinusoid by , one can 

expr splacement at D in the following form:  
( )td i

 

   . (8) ddxxx nnnn
22 22 ω+ςω=ω+ςω+ &&&&

 

Since ( )td  is known [Eqs. (4), (5)], one can find the relative 
displacement by solving Equation (8) for ( )tx .  Then Equations  
(1), (2), and (3) can be used to formulate the respective shock 
response spectra.  
 

Response ( )tx  to a generic induced displacement ( )td  

ess the di   

 , (4) ( ) ( )∑
ν

=

=
1i

i tdtd

 Consider first the response  of the SDOF MSD system 
to an arbitrary (assumed Laplace-transformable) induced 
disturbance 

( )tx

( )td .  Let the Laplace transforms of ( )tx  and ( )td  
be represented by ( )sX  and , respectively.  Then the 
Laplace transform of Equation (8) is 

(sD )
 

where       . (5) ( ) ( ) ( )tuteDtd ii
t

ii
i

1sin −
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+= φω
α Xs
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Rearrangement yields ( ) tdteC id
tn ∗
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Taking the inverse Laplace transform of Equation (10), one 
obtains the following expression for the displacement response, 
in terms of induced displacement input : ( )td

 

                ( ) ( )[ ]






 +

+−+
+

222

cossin

ii

iiii
t

tte i

ρµ

φρρφρµ
µ

 
 

   ( ) ( )tBtAetx dd
tn ωω
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sincos +=
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             + , (11) ( ) tdteC d
tn ∗



 +
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sin ( )

 

where   21 ς−ω=ω nd , (12) 
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The asterisk in Equation (11) indicates convolution, defined for 
arbitrary functions  and f g  as follows: 

 

Define now the following variables, for convenience: 
  

   . (17) ( ) ( ) ( ) ( ) τττ dtgftgtf
t

∫ +
−=∗

0
:    ( )221

2 ii

i
i

ν+µ

µ
=κ , (24) 

 
 

   
( )222

2 ii

i
i

ρ+µ

µ
=κ , (25) Convolution term, for modal (damped-sinusoid) induced-

disturbance component  ( )td i
 To proceed it will be necessary to evaluate the convolution 
term of Equation (11) for an exponentially decaying sinusoid 

 [Eq. (5)].  Expansion of the integrand and application of 
the trigonometric addition formula  

( )td i

   
( )223

2 ii

i
i

ν+µ

ν
=κ , (26) 

 

   ( ) βαβαβα sincoscossinsin +=+ , (18) 
and    

( )224
2 ii

i
i

ρ+µ

ρ
=κ . (27) 

yields  

Upon substituting from Equations (24) through (27), Equation 
(23) can be simplified to the following form:    ( ) tdteC id

tn ∗



 +

−
φω

ςω
sin ( )  

 

 

   ( ) ( ) ( ) ττωφτωφω
τςωαα

deteCD i
t
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i
nii cossinsin

0∫ +
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++=   
( ) tdteC id
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sin ( )
)

 

   =  ( ) ([ idiidi
t

i tteDC n φφωκφφωκ
ςω

−++++−
−

coscos 21
 

  ( ) ( ) ]idiidi tt φφωκφφωκ −++++− sinsin 43    ( ) ( ) ( ) ττωφτωφω
τςωα

det i
t

dii
ni sinsincos

0∫ +
−

++− .  (19) 

      ( ) ([ φφωκφφωκ
α

−++++−−
−

iiiiii
t

i tteDC i coscos 21 )Integrating [7]; and making the substitutions   
  

   , (20) nii ςω−α=µ   ( ) ( ])φφωκφφωκ −+−++− iiiiii tt sinsin 43 . (28) 
 

   , (21) idi ω−ω=ν
    

Recall [8] the trigonometric relationship: 
 

and   ; (22) idi ω+ω=ρ   





 +θ+=θ+θ −

B
ABAB 122 tansinsincosA . (29) 

 

one obtains the following algebraic result: 
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With the help of Equation (29), Equation (28) can now be 
expressed (after some algebraic simplification), as the 
following harmonic sum: 

( ) ( )tBtAet dd
tn ωωδ
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sincos +=

−
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  ( ) ]}Ct ii /sin φω +− . (37) 
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Velocity response ( )tx&  to modally componentiated ( )td  
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 Differentiation of Equation (36) yields the following 
expression for the velocity response ( )tx&  to the induced 
displacement ( )td : 
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Acceleration response ( )tx&&  to modally componentiated ( )td  
 

 Differentiating Equation (38) with respect to time, and 
combining terms, yields an equation for the acceleration 
response ( )tx&& : 

for C , µ , ν , and ρ  as defined by Equations (15), (20), (21), 
and (22), respectively.  

i i i

 
Position response  to modally componentiated ( )tx ( )td  
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 Substitution from Equation (4) into Equation (11), 
followed by application of Equation (30), yields the following 
equation for the SDOF MSD position : ( )tx
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  . (36) ( ]


+−+− iiii t 32 sin θφφωδ

Note that the number of terms in Equation (39) could be 
reduced by a factor of two, for computer implementation, by 
use of Equation (29). )
 

Shock response spectra  

Equation (36) describes the response  to the total 
(composite) induced displacement given by Equations (4) and 
(5).    

( )tx  Now it is possible to express the various desired shock 
response spectra, in analytical form.  The spectral displacement 
and spectral velocity are defined, respectively, by Equations (1) 
and (2), where the relative displacement ( )tδ  is given by 
Equation (37).  The spectral acceleration is defined by Equation 
(3), where the absolute acceleration  is given by Equation 
(39). 

( )tx&&

 

Relative displacement δ , for   modally componentiated ( )t ( )td  
 Substitution from Equations (4), (5), and (36) into 
Equation (6), yields the following expression for relative 
displacement, of the SDOF MSD system mass: 
 

 

 4  



SOLUTION FOR THE UNDAMPED CASE ( ) 0=ς ( ) ( )tBtAtx nnn ωωω sincos2
+−=&&   

 

Position response , undamped case ( )tx
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VERIFICATION AND MATLAB IMPLEMENTATION  
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An algebraic check of Equations (37) and (39) 
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where  is defined by Equation (6).  The expressions for δ  
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Acceleration response , undamped case ( )tx&&
Without damping, the absolute acceleration given by 

Equation (39) reduces (again, as above, with simplified 
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A numerical check of Equation (37) Further expansion of terms yields the following: 
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 To verify the results for the more general, underdamped 
case, the algebraic equation for relative displacement ( )tδ  
[Equation (37)] was first implemented in MATLAB code.  
Then, for selected damping ratios (i.e., of the hypothetical 
SDOF MSD system), and for various induced-displacement 
inputs [Eqs. (4) and (5)], numerical evaluations were made of 
the spectral displacement, using Equation (1) with the algebraic 
results given by Equation (37).  These results were compared 
with numerical evaluations of the same spectral quantity (using 
MATLAB) with the convolution integrals determined by direct 
numerical integration [Eqs. (1), (4), (5), and (11)].  The results 
from algebraic substitution and numerical integration are 
identical.  
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  For a representative example, consider an induced-
displacement input with components described by the 
parameters of Table 1.  Table 2 displays the results of 
calculations of corresponding spectral displacement by the two 
methods described above.  The two approaches are seen to give 
dentical results. 
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Table 1.  Parameters for Induced-Displacement 
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In order for Equation (48) to hold nontrivially, it is necessary 
that the square-bracketed terms in Equation (52) be zero, for all 
indices i.  In particular, it is necessary that 
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i  0 0 0 0 0 
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and that Table 2.  Comparison of Spectral Displacements  
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From Equations (43) and (45), one can obtain the following: 
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1

SRS Freq. ω    

 
n

( )1.0=ς

( )nDS ω( )nDS ω   from  
Algebraic Substitution 

  from  
Numerical  Integration 

0.01639525625157 0.01639525625157

0.01641587042504 0.01641587042504

0.01644317777833 0.01644317777833

0.01647694228270 0.01647694228270

0.01651690741770 0.01651690741770

0.01656279716325 0.01656279716325

0.01661431703708 0.01661431703708

0.01667115517439 0.01667115517439

0.01673298344652 0.01673298344652

0.01679945861516 0.01679945861516 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Substitution from Equations (41), (42), and (55) through (58), 
into Equations (53) and (54), proves the latter two equations to 
express valid identities.  This in turn demonstrates that 
Equations (46) and (47) satisfy Equation (48) identically 
(Q.E.D.).  
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Figure 3 presents plots of the spectral quantities, for this input 
 (Table 1), and for this damping ratio ( )td ς  (Table 2), with 

zero initial conditions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Shock-Response Spectra Using the Induced-
Displacement Input of Table 1, for damping ratio 0.1. 

 
CONCLUSION 
 

 This paper has presented analytical equations describing 
the spectral displacement (displacement SRS), the spectral 
velocity (pseudovelocity SRS), and the spectral acceleration 
(absolute acceleration SRS), for a proportionally damped, linear 
system.  For such systems an impulsive mechanical-shock 
disturbance produces a vibratory response expressible 
analytically in terms of the system modes and modeshapes, 
using normal-mode orthogonalization.  In particular, the 
response has the form of a linear combination of exponentially 
decaying sinusoids, of various amplitudes and phase shifts.  A 
response of such a form can be represented by SRS’s for which 
this paper has provided analytical descriptions.  The 
displacement and pseudovelocity SRS’s are defined, 
respectively, by Equations (1) and (2), where the relative 
displacement ( )tδ  is given analytically by Equation (37).  The 
spectral acceleration is defined by Equation (3), where the 
absolute acceleration is given analytically by Equation (39).   
 Having these analytical expressions for the various SRS’s 
permits the SRS’s to be computed exactly for impulsive shock 
disturbances, without necessitating numerical evaluation of the 
convolution integral.  The analytical expressions can be used 
for other, non-impulsive input loads, even those for which there 
is no simple analytical description, provided they can be 

approximated as impulses.  The physical system itself serves as 
a modal filter of the shock input, to produce a vibratory 
response, known at any desired point on the system in terms of 
its exponentially decaying sinusoidal components.  Each of 
these components is known in terms of four values: its 
frequency, its decay rate (time constant), its phase angle, and its 
amplitude.  From these values the desired SRS can be 
determined by evaluating, at each point of a discretized 
continuum of frequencies (i.e., those of the conceptualized 
SDOF MSD systems), the maximum (or minimum) of a time 
function consisting of simple algebraic expressions involving 
simple trigonometric operations.  No numerical convolution is 
required, because the integrations have already been 
accomplished analytically (and exactly, for impulse loading), 
with the results incorporated into the algebraic expressions.  
This method can provide for accurate SRS computation 
irrespective of the input shock’s exact shape, provided the input 
is approximately impulsive.  For linear systems the described 
method can be used as a benchmark to evaluate the accuracy of 
other methods of SRS determination.  It can also be used to 
determine the minimum number of modes required, in a 
system’s finite-element model, to produce an SRS of specified 
accuracy. 
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  S WALSH 
  1155 HERNDON PKWY STE 900 
  HERNDON VA 20170 

 3 NASA LANGLEY RESEARCH CTR 
  AMSRD ARL VS 
  W ELBER MS 266 
  F BARTLETT JR MS 266 
  G FARLEY MS 266 
  HAMPTON VA 23681-0001 
 
 1 NASA LANGLEY RESEARCH CTR 
  T GATES MS 188E 
  HAMPTON VA 23661-3400 
 
 1 FHWA 
  E MUNLEY 
  6300 GEORGETOWN PIKE 
  MCLEAN VA 22101 
 
 1 USDOT FEDERAL RAILROAD 
  M FATEH RDV 31 
  WASHINGTON DC 20590 
 
 3 CYTEC FIBERITE 
  R DUNNE 
  D KOHLI 
  R MAYHEW 
  1300 REVOLUTION ST 
  HAVRE DE GRACE MD 21078 
 
 1 DIRECTOR 
  NGIC 
  IANG TMT 
  2055 BOULDERS RD 
  CHARLOTTESVILLE VA 
  22911-8318 
 
 1 SIOUX MFG 
  B KRIEL 
  PO BOX 400 
  FT TOTTEN ND 58335 
 
 2 3TEX CORP 
  A BOGDANOVICH 
  J SINGLETARY 
  109 MACKENAN DR 
  CARY NC 27511 
 
 1 3M CORP 
  J SKILDUM 
  3M CENTER BLDG 60 IN 01 
  ST PAUL MN 55144-1000 
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 1 DIRECTOR 
  DEFENSE INTLLGNC AGNCY 
  TA 5 
  K CRELLING 
  WASHINGTON DC 20310 
 
 1 ADVANCED GLASS FIBER YARNS 
  T COLLINS 
  281 SPRING RUN LANE STE A 
  DOWNINGTON PA 19335 
 
 1 COMPOSITE MATERIALS INC 
  D SHORTT 
  19105 63 AVE NE 
  PO BOX 25  
  ARLINGTON WA 98223 
 
 1 JPS GLASS 
  L CARTER 
  PO BOX 260 
  SLATER RD 
  SLATER SC 29683 
 
 1 COMPOSITE MATERIALS INC 
  R HOLLAND 
  11 JEWEL CT 
  ORINDA CA 94563 
 
 1 COMPOSITE MATERIALS INC 
  C RILEY 
  14530 S ANSON AVE 
  SANTA FE SPRINGS CA 90670 
 
 2 SIMULA 
  J COLTMAN 
  R HUYETT 
  10016 S 51ST ST 
  PHOENIX AZ 85044 
 
 2 PROTECTION MATERIALS INC 
  M MILLER 
  F CRILLEY 
  14000 NW 58 CT 
  MIAMI LAKES FL 33014 
 
 2 FOSTER MILLER 
  M ROYLANCE 
  W ZUKAS 
  195 BEAR HILL RD 
  WALTHAM MA 02354-1196 
 

 1 ROM DEVELOPMENT CORP 
  R O MEARA 
  136 SWINEBURNE ROW 
  BRICK MARKET PLACE 
  NEWPORT RI 02840 
 
 2 TEXTRON SYSTEMS 
  T FOLTZ 
  M TREASURE 
  1449 MIDDLESEX ST 
  LOWELL MA 01851 
 
 1 O GARA HESS & EISENHARDT 
  M GILLESPIE 
  9113 LESAINT DR  
  FAIRFIELD OH 45014 
 
 2 MILLIKEN RESEARCH CORP 
  H KUHN 
  M MACLEOD 
  PO BOX 1926 
  SPARTANBURG SC 29303 
 
 1 CONNEAUGHT INDUSTRIES INC 
  J SANTOS 
  PO BOX 1425 
  COVENTRY RI 02816 
 
 1 ARMTEC DEFENSE PRODUCTS 
  S DYER 
  85 901 AVE 53 
  PO BOX 848 
  COACHELLA CA 92236 
 
 1 NATL COMPOSITE CTR 
  T CORDELL 
  2000 COMPOSITE DR 
  KETTERING OH 45420 
 
 3 PACIFIC NORTHWEST LAB 
  M SMITH 
  G VAN ARSDALE 
  R SHIPPELL 
  PO BOX 999 
  RICHLAND WA 99352 
 
 1 SAIC 
  M PALMER 
  1410 SPRING HILL RD STE 400 
  MS SH4 5 
  MCLEAN VA 22102  
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 1 ALLIANT TECHSYSTEMS INC 
  4700 NATHAN LN N 
  PLYMOUTH MN 55442-2512 
 
 1 APPLIED COMPOSITES 
  W GRISCH 
  333 NORTH SIXTH ST 
  ST CHARLES IL 60174 
 
 1 CUSTOM ANALYTICAL 
  ENG SYS INC  
  A ALEXANDER 
  13000 TENSOR LANE NE 
  FLINTSTONE MD 21530 
 
 1 AAI CORP 
  DR N B MCNELLIS 
  PO BOX 126 
  HUNT VALLEY MD 21030-0126 
 
 1 OFC DEPUTY UNDER SEC DEFNS 
  J THOMPSON 
  1745 JEFFERSON DAVIS HWY 
  CRYSTAL SQ 4 STE 501 
  ARLINGTON VA 22202 
 
 3 ALLIANT TECHSYSTEMS INC 
  J CONDON 
  E LYNAM 
  J GERHARD 
  WV01 16 STATE RT 956 
  PO BOX 210 
  ROCKET CENTER WV  
  26726-0210 
 
 1 PROJECTILE TECHNOLOGY INC 
  515 GILES ST 
  HAVRE DE GRACE MD 21078 
 
 1 HEXCEL INC 
  R BOE 
  PO BOX 18748 
  SALT LAKE CITY UT 84118 
 
 1 PRATT & WHITNEY 
  C WATSON  
  400 MAIN ST MS 114 37 
  EAST HARTFORD CT 06108 

 5 NORTHROP GRUMMAN 
  B IRWIN 
  K EVANS 
  D EWART 
  A SHREKENHAMER 
  J MCGLYNN 
  BLDG 160 DEPT 3700  
  1100 WEST HOLLYVALE ST 
  AZUSA CA 91701 
 
 1 HERCULES INC  
  HERCULES PLAZA 
  WILMINGTON DE 19894 
 
 1 BRIGS COMPANY 
  J BACKOFEN 
  2668 PETERBOROUGH ST  
  HERNDON VA 22071-2443 
 
 1 ZERNOW TECHNICAL SERVICES  
  L ZERNOW 
  425 W BONITA AVE STE 208 
  SAN DIMAS CA 91773 
 
 1 GENERAL DYNAMICS OTS 
  L WHITMORE 
  10101 NINTH ST NORTH 
  ST PETERSBURG FL 33702 
 
 2 GENERAL DYNAMICS OTS 
  FLINCHBAUGH DIV 
  K LINDE 
  T LYNCH 
  PO BOX 127 
  RED LION PA 17356 
 
 1 GKN WESTLAND AEROSPACE 
  D OLDS 
  450 MURDOCK AVE 
  MERIDEN CT 06450-8324 
 
 2 BOEING ROTORCRAFT 
  P MINGURT 
  P HANDEL 
  800 B PUTNAM BLVD 
  WALLINGFORD PA 19086 
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 5 SIKORSKY AIRCRAFT 
  G JACARUSO 
  T CARSTENSAN 
  B KAY 
  S GARBO MS S330A 
  J ADELMANN 
  6900 MAIN ST 
  PO BOX 9729 
  STRATFORD CT 06497-9729 
 
 1 AEROSPACE CORP 
  G HAWKINS M4 945 
  2350 E EL SEGUNDO BLVD 
  EL SEGUNDO CA 90245 
 
 2 CYTEC FIBERITE 
  M LIN 
  W WEB 
  1440 N KRAEMER BLVD 
  ANAHEIM CA 92806 
 
 2 UDLP 
  G THOMAS 
  M MACLEAN 
  PO BOX 58123 
  SANTA CLARA CA 95052 
 
 1 UDLP WARREN OFC 
  A LEE  
  31201 CHICAGO RD SOUTH 
  SUITE B102 
  WARREN MI 48093 
 
 2 UDLP 
  R BRYNSVOLD 
  P JANKE MS 170 
  4800 EAST RIVER RD 
  MINNEAPOLIS MN 55421-1498 
 
 1 LOCKHEED MARTIN 
  SKUNK WORKS  
  D FORTNEY 
  1011 LOCKHEED WAY 
  PALMDALE CA 93599-2502 
 
 1 LOCKHEED MARTIN 
  R FIELDS 
  5537 PGA BLVD 
  SUITE 4516 
  ORLANDO FL 32839 
 

 1 NORTHRUP GRUMMAN CORP 
  ELECTRONIC SENSORS 
  & SYSTEMS DIV 
  E SCHOCH MS V 16 
  1745A W NURSERY RD 
  LINTHICUM MD 21090 
 
 1 GDLS DIVISION 
  D BARTLE 
  PO BOX 1901 
  WARREN MI 48090 
 
 2 GDLS 
  D REES 
  M PASIK 
  PO BOX 2074 
  WARREN MI 48090-2074 
 
 1 GDLS 
  MUSKEGON OPER 
  M SOIMAR 
  76 GETTY ST 
  MUSKEGON MI 49442 
 
 1 GENERAL DYNAMICS 
  AMPHIBIOUS SYS 
  SURVIVABILITY LEAD 
  G WALKER 
  991 ANNAPOLIS WAY 
  WOODBRIDGE VA 22191 
 
 6 INST FOR ADVANCED 
  TECH 
  H FAIR 
  I MCNAB 
  P SULLIVAN 
  S BLESS 
  W REINECKE 
  C PERSAD 
  3925 W BRAKER LN STE 400 
  AUSTIN TX 78759-5316 
 
 1 ARROW TECH ASSOC 
  1233 SHELBURNE RD STE D8 
  SOUTH BURLINGTON VT 
  05403-7700 
 
 1 R EICHELBERGER 
  CONSULTANT 
  409 W CATHERINE ST 
  BEL AIR MD 21014-3613 
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 1 SAIC 
  G CHRYSSOMALLIS 
  8500 NORMANDALE LAKE BLVD 
  SUITE 1610 
  BLOOMINGTON MN 55437-3828 
 
 1 UCLA MANE DEPT ENGR IV 
  H T HAHN 
  LOS ANGELES CA 90024-1597 
 
 2 UNIV OF DAYTON 
  RESEARCH INST 
  R Y KIM 
  A K ROY 
  300 COLLEGE PARK AVE 
  DAYTON OH 45469-0168 
 
 1 UMASS LOWELL  
  PLASTICS DEPT 
  N SCHOTT 
  1 UNIVERSITY AVE 
  LOWELL MA 01854 
 
 1 IIT RESEARCH CTR 
  D ROSE  
  201 MILL ST 
  ROME NY 13440-6916 
 
 1 GA TECH RESEARCH INST 
  GA INST OF TCHNLGY 
  P FRIEDERICH 
  ATLANTA GA 30392 
 
 1 MICHIGAN ST UNIV 
  MSM DEPT 
  R AVERILL 
  3515 EB 
  EAST LANSING MI 48824-1226 
 
 1 UNIV OF WYOMING 
  D ADAMS 
  PO BOX 3295 
  LARAMIE WY 82071 
 
 1 PENN STATE UNIV 
  R S ENGEL  
  245 HAMMOND BLDG 
  UNIVERSITY PARK PA 16801 
 

 2 PENN STATE UNIV 
  R MCNITT 
  C BAKIS 
  212 EARTH ENGR 
  SCIENCES BLDG 
  UNIVERSITY PARK PA 16802 
 
 1 PURDUE UNIV 
  SCHOOL OF AERO & ASTRO 
  C T SUN 
  W LAFAYETTE IN 47907-1282 
 
 1 STANFORD UNIV 
  DEPT OF AERONAUTICS 
  & AEROBALLISTICS 
  S TSAI 
  DURANT BLDG 
  STANFORD CA 94305 
 
 1 UNIV OF MAINE 
  ADV STR & COMP LAB 
  R LOPEZ ANIDO 
  5793 AEWC BLDG  
  ORONO ME 04469-5793 
 
 1 JOHNS HOPKINS UNIV 
  APPLIED PHYSICS LAB 
  P WIENHOLD 
  11100 JOHNS HOPKINS RD 
  LAUREL MD 20723-6099 
 
 1 UNIV OF DAYTON 
  J M WHITNEY 
  COLLEGE PARK AVE 
  DAYTON OH 45469-0240 
 
 1 NORTH CAROLINA ST UNIV 
  CIVIL ENGINEERING DEPT 
  W RASDORF 
  PO BOX 7908 
  RALEIGH NC 27696-7908 
 
 5 UNIV OF DELAWARE 
  CTR FOR COMPOSITE MTRLS 
  J GILLESPIE 
  M SANTARE 
  S YARLAGADDA 
  S ADVANI 
  D HEIDER 
  201 SPENCER LAB 
  NEWARK DE 19716 
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 1 DEPT OF MTRLS 
  SCIENCE & ENGRG 
  UNIV OF ILLINOIS 
  AT URBANA CHAMPAIGN 
  J ECONOMY 
  1304 WEST GREEN ST 115B 
  URBANA IL 61801 
 
 1 UNIV OF MARYLAND 
  DEPT OF AEROSPACE ENGRG 
  A J VIZZINI 
  COLLEGE PARK MD 20742 
 
 1 DREXEL UNIV 
  A S D WANG 
  3141 CHESTNUT ST 
  PHILADELPHIA PA 19104 
 
 3 UNIV OF TEXAS AT AUSTIN 
  CTR FOR ELECTROMECHANICS 
  J PRICE 
  A WALLS 
  J KITZMILLER 
  10100 BURNET RD 
  AUSTIN TX 78758-4497 
 
 3 VA POLYTECHNICAL 
  INST & STATE UNIV 
  DEPT OF ESM 
  M W HYER 
  K REIFSNIDER 
  R JONES 
  BLACKSBURG VA 24061-0219 
 
 1 SOUTHWEST RESEARCH INST 
  ENGR & MATL SCIENCES DIV 
  J RIEGEL 
  6220 CULEBRA RD 
  PO DRAWER 28510 
  SAN ANTONIO TX 78228-0510 
 
 1 BATELLE NATICK OPERS 
  B HALPIN 
  313 SPEEN ST 
  NATICK MA 01760 
 
 3 DIRECTOR 
  US ARMY RESEARCH LAB 
  AMSRD ARL WM MB 
  A FRYDMAN 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 

ABERDEEN PROVING GROUND 
 
 1 US ARMY ATC 
  CSTE DTC AT AC I 
  W C FRAZER 
  400 COLLERAN RD 
  APG MD 21005-5059 
 
 91 DIR USARL 
  AMSRD ARL CI 
  AMSRD ARL O AP EG 
   M ADAMSON 
  AMSRD ARL SL BA 
  AMSRD ARL SL BB 
   D BELY 
  AMSRD ARL WM 
   J SMITH 
   H WALLACE 
  AMSRD ARL WM B 
   A HORST 
   T KOGLER 
  AMSRD ARL WM BA 
   D LYON 
  AMSRD ARL WM BC 
   J NEWILL 
   P PLOSTINS 
   A ZIELINSKI 
  AMSRD ARL WM BD 
   P CONROY 
   B FORCH 
   M LEADORE 
   C LEVERITT 
   R LIEB 
   R PESCE RODRIGUEZ 
   B RICE 
  AMSRD ARL WM BF 
   S WILKERSON 
  AMSRD ARL WM M 
   B FINK 
   J MCCAULEY 
  AMSRD ARL WM MA 
   L GHIORSE 
   S MCKNIGHT 
   E WETZEL 
  AMSRD ARL WM MB 
   J BENDER 
   T BOGETTI 
   L BURTON 
   R CARTER 
   K CHO 
   W DE ROSSET 
   G DEWING 
   R DOWDING 
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   W DRYSDALE 
   R EMERSON 
   D HENRY 
   D HOPKINS 
   R KASTE 
   L KECSKES 
   M MINNICINO 
   B POWERS 
   D SNOHA 
   J SOUTH 
   M STAKER 
   J SWAB 
   J TZENG 
  AMSRD ARL WM MC 
   J BEATTY 
   R BOSSOLI 
   E CHIN 
   S CORNELISON 
   D GRANVILLE 
   B HART 
   J LASALVIA 
   J MONTGOMERY 
   F PIERCE 
   E RIGAS 
   W SPURGEON 
  AMSRD ARL WM MD 
   B CHEESEMAN 
   P DEHMER 
   R DOOLEY 
   G GAZONAS 
   S GHIORSE 
   C HOPPEL 
   M KLUSEWITZ 
   W ROY 
   J SANDS 
   D SPAGNUOLO 
   S WALSH 
   S WOLF 
  AMSRD ARL WM RP 
   J BORNSTEIN 
   C SHOEMAKER 
  AMSRD ARL WM T 
   B BURNS 
  AMSRD ARL WM TA 
   W BRUCHEY 
   M BURKINS 
   W GILLICH 
   B GOOCH 
   T HAVEL 
   E HORWATH 
   M NORMANDIA 
   J RUNYEON 
   M ZOLTOSKI 

  AMSRD ARL WM TB 
   P BAKER 
  AMSRD ARL WM TC 
   R COATES 
  AMSRD ARL WM TD 
   D DANDEKAR 
   T HADUCH 
   T MOYNIHAN 
   M RAFTENBERG 
   S SCHOENFELD 
   T WEERASOORIYA 
  AMSRD ARL WM TE  
   A NIILER 
   J POWELL 
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 1 LTD 
  R MARTIN 
  MERL 
  TAMWORTH RD 
  HERTFORD SG13 7DG  
  UK 
 
 1 SMC SCOTLAND 
  P W LAY 
  DERA ROSYTH 
  ROSYTH ROYAL DOCKYARD 
  DUNFERMLINE FIFE KY 11 2XR  
  UK 
 
 1 CIVIL AVIATION 
  ADMINSTRATION 
  T GOTTESMAN 
  PO BOX 8 
  BEN GURION INTRNL AIRPORT 
  LOD 70150 
  ISRAEL 
 
 1 AEROSPATIALE 
  S ANDRE 
  A BTE CC RTE MD132 
  316 ROUTE DE BAYONNE 
  TOULOUSE 31060 
  FRANCE 
 
 1 DRA FORT HALSTEAD 
  P N JONES  
  SEVEN OAKS KENT TN 147BP 
  UK 
 
 1 SWISS FEDERAL ARMAMENTS 
  WKS 
  W LANZ 
  ALLMENDSTRASSE 86 
  3602 THUN 
  SWITZERLAND 
 
 1 DYNAMEC RESEARCH LAB 
  AKE PERSSON 
  BOX 201 
  SE 151 23 SODERTALJE 
  SWEDEN 
 

 1 ISRAEL INST OF TECHLGY 
  S BODNER 
  FACULTY OF MECHANICAL 
  ENGR 
  HAIFA 3200 
  ISRAEL 
 
 1 DSTO 
  WEAPONS SYSTEMS DIVISION 
  N BURMAN RLLWS 
  SALISBURY 
  SOUTH AUSTRALIA 5108 
  AUSTRALIA  
 
 1 DEF RES ESTABLISHMENT 
  VALCARTIER 
  A DUPUIS 
  2459 BLVD PIE XI NORTH 
  VALCARTIER QUEBEC 
  CANADA 
  PO BOX 8800 COURCELETTE 
  GOA IRO QUEBEC 
  CANADA 
 
 1 ECOLE POLYTECH 
  J MANSON 
  DMX LTC 
  CH 1015 LAUSANNE 
  SWITZERLAND 
 
 1 TNO DEFENSE RESEARCH 
  R IJSSELSTEIN 
  ACCOUNT DIRECTOR  
  R&D ARMEE 
  PO BOX 6006 
  2600 JA DELFT 
  THE NETHERLANDS 
 
 2 FOA NATL DEFENSE RESEARCH 
  ESTAB 
  DIR DEPT OF WEAPONS & 
  PROTECTION 
  B JANZON 
  R HOLMLIN 
  S 172 90 STOCKHOLM 
  SWEDEN
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 2 DEFENSE TECH & PROC 
  AGENCY GROUND 
  I CREWTHER 
  GENERAL HERZOG HAUS 
  3602 THUN 
  SWITZERLAND 
 
 1 MINISTRY OF DEFENCE 
  RAFAEL 
  ARMAMENT DEVELOPMENT 
  AUTH  
  M MAYSELESS 
  PO BOX 2250 
  HAIFA 31021 
  ISRAEL 
 
 1 TNO DEFENSE RESEARCH 
  I H PASMAN 
  POSTBUS 6006 
  2600 JA DELFT 
  THE NETHERLANDS 
 
 1 B HIRSCH 
  TACHKEMONY ST 6 
  NETAMUA 42611 
  ISRAEL 
 
 1 DEUTSCHE AEROSPACE AG 
  DYNAMICS SYSTEMS 
  M HELD 
  PO BOX 1340 
  D 86523 SCHROBENHAUSEN 
  GERMANY 
 


	Substitution from Equation (4) into Equation (11), followed by application of Equation (30), yields the following equation for the SDOF MSD position �:
	Substitution from Equations (4), (5), and (36) into Equation (6), yields the following expression for relative displacement, of the SDOF MSD system mass:
	With no damping, the relative displacement given by Equation (37) reduces to the following:
	�
	.(51)
	In order for Equation (48) to hold nontrivially, it is necessary that the square-bracketed terms in Equation (52) be zero, for all indices i.  In particular, it is necessary that
	�
	,(53)
	�
	.(54)
	From Equations (43) and (45), one can obtain the following:
	,(55)
	,(56)
	,(57)
	and�,(58)
	Substitution from Equations (41), (42), and (55) through (58), into Equations (53) and (54), proves the latter two equations to express valid identities.  This in turn demonstrates that Equations (46) and (47) satisfy Equation (48) iden



